The isoscalar monopole resonance in the A~90 region

D.H. Youngblood, Y.-W. Lui, Krishichayan,¹ J. Button, M.R. Anders, M.L. Gorelik,² M.H. Urin,² and S. Shlomo

¹Dept. of Pure and Applied Physics, Guru Ghasidas University Bilaspur-495009 C G India ²National Research Nuclear University "MEPhI", Moscow, 115409 Russia

The isoscalar giant monopole resonances (ISGMR) in 90,92,94 Zr and 92,96,98,100 Mo have been studied with inelastic scattering of 240 MeV α particles at small angles including 0°. Strength corresponding to approximately 100% of the ISGMR (E0) energy-weighted sum rule was identified in each nucleus. In all cases the strength consisted of two components separated by 7-9 MeV. Except for the mass 92 nuclei, the upper component contained 14-22% of the E0 energy weighted sum rule (EWSR), however 38% and 65% of the E0 EWSR was located in the upper components in 92 Zr and 92 Mo respectively. The energies of the ISGMR for 92 Zr and 92 Mo are 1.22 MeV and 2.80 MeV higher, respectively, than for 90 Zr, suggesting a significant nuclear structure contribution to the energy of the ISGMR in these nuclei.

The energy of the isoscalar giant monopole resonance(ISGMR) is related to the compression modulus of the nucleus(K_A)[1,2]as follows:

$$E_{GMR} = (\hbar^2 K_A / m < r^2 >)^{1/2}$$
(1)

where m is the nucleon mass and $\langle r^2 \rangle$ is the mean square nuclear radius. Using for E_{GMR} the experimental energies corresponding to the scaling model {(m₃/m₁)^{1/2}} and radii obtained from Hartree-Fock calculations with the KDE0v1 interaction[4] having K_{NM} = 227.5 MeV, the experimental scaling model

FIG. 1. The scaling model K_A values obtained from the measured scaling energies $(m_3/m_1)^{1/2}$ are shown for the Zr isotopes by squares and for the Mo isotopes by the triangles plotted versus A. The error bars reflect the uncertainties in $(m_3/m_1)^{1/2}$. Also shown are lines connecting the HF-based RPA values of K_A calculated within HF-RPA using the KDE0v1 interaction for the Zr (green-dashed) and Mo (black) isotopes.

values of K_A for the Zr and Mo isotopes were obtained from Eq. (1) and are plotted versus A in Fig. 1. For ⁹²Zr and ⁹²Mo, K_A values obtained from the experimental energies are 27 MeV (5 σ) and 56 MeV (8 σ) higher than the values predicted with HF-RPA.

[1] J.P. Blaizot, Phys. Rep. 64, 171(1980).

[2] J. Treiner, H. Krivine and O. Bohigas, Nucl. Phys. A371, 253 (1981).